Nullstill
Filter
Ferdig

-

Mer enn 100 treff
 

En ligne 12 months 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Incident Management, Service Desk, Service Request Management, Monitoring and Event Management and Pro... [+]
Understand the purpose and key concepts of the Monitor, Support, and Fulfil practices, elucidating their importance in maintaining, supporting, and delivering IT services effectively.InteractiveOur eLearning:Self-pacedDevice-friendly12 hour contentMobile-optimised Exam:60 questionsMultiple Choice90 minutesClosed bookMinimum required score to pass: 65%  [-]
Lire plus
Salle de classe virtuelle 150 minutes 7 990 kr
01 Dec
Bli med oss for å løse opp knuter og finne veien videre i casen konflikter og rolleutfordringer i styrereommet! [+]
Case kveld Del 1: Geronimo Management AS   Deltakelse på denne CASE-kvelden er inkludert i prisen for alle som er med i styrenettverksgrupper arrangert av Styreforeningen. For andre deltakere som er medlemmer av Styreforeningen koster seminaret kr. 4.990,-.For deltakere som ikke er med i styrenettverksgrupper og som ikke er medlemmer av Styreforeningen er prisen kr. 5.990,-   Overskriften for kvelden er: Konflikter og rolleutfordringer i styrerommet   Denne kvelden beveger vi oss inn i kulissene for selskapet: Gerinomo Management AS som er et SMB selskap, opprinnelig grundet og eiet av 2 tidligere kamerater: Halvor og Jonas. De to har hatt 30 års fartstid sammen i og med oppbyggingen av selskapet. I løpet av kort tid oppstår to situasjoner: Halvor får akutt hjerteproblemer på vei hjem fra arbeid og dør kort tid etter. Det kommer videre frem at Jonas sin tilstand de siste månedene har vært holdt skjult, men det blir nå klart at han har hurtig eskalerende demens og ikke er istand til å ta vare på seg selv eller selskapet. Vedtektene og aksjonæravtalen har noen bestemmelser om situasjoner som her oppstår, men er ikke dekkende nå som begge eiere er «ute av bildet». Neste generasjon på begge sider ønsker å «rykke inn» for å overta den veldrevne virksomheten. Et styre må på plass og håndtere både utfordringer og muligheter som står foran selskapet. Her må vi inn å analysere: hva som skjer, hva som burde gjøres, hvordan vi kan gå frem for å håndtere ulike situasjoner etc?   Bli med oss for å løse opp knuter og finne veien videre!   [-]
Lire plus
Salle de classe virtuelle 150 minutes 7 990 kr
06 Nov
Case: Denne kvelden skal vi planlegge, innkalle og gjennomføre en krevende generalforsamling i selskapet Extender AS. [+]
Case samling 2: «Konflikter og rolleutfordringer på generalforsamlingen»    Deltakelse på denne CASE-kvelden er inkludert i prisen for alle som er med i styrenettverksgrupper arrangert av Styreforeningen. For andre deltakere som er medlemmer av Styreforeningen koster seminaret kr. 4.990,-.For deltakere som ikke er med i styrenettverksgrupper og som ikke er medlemmer av Styreforeningen er prisen kr. 5.990,-   Overskriften for kvelden er: Konflikter og rolleutfordringer på generalforsamlingen Denne kvelden skal vi planlegge, innkalle og gjennomføre en krevende generalforsamling i selskapet Extender AS.   Selskapet har 122 aksjonærer og aksjer fordelt mellom 3 klasser. Det er opprør blant en gruppe av aksjonærene som mener at en av de større aksjonærene med 36% eierskap skaper urimelige fordeler for egne nærstående på de andre aksjonærers bekostning. Det er videre kommet inn ulike forslag til vedtektsendringer som styret må fremme til behandling, herunder utradisjonelle varianter som styret er i tvil om kan innføres i et selskapsvedtekter. Det er krasse fronter hva gjelder styresammensettingen i selskapet, og det har kommet forslag til ny styresammensetting fra valgkomiteen, samt fra hele 3 andre aksjonærgrupperinger. Det er også varslet at det kan komme benkeforslag på enkeltkandidater. En emisjon bør komme i orden og det bør fremlegges en instruks for valgkomiteen da denne føler det vanskelig å vite sitt mandat og sine mulige måter og rammer og arbeide på, eller innenfor. Bli med oss for å løse opp knuter og finne fornuftige løsninger for hvordan håndtere de ulike situasjonene og sakene.   [-]
Lire plus
Oslo Bergen 4 days 22 500 kr
13 Oct
13 Oct
20 Oct
DP-080: Querying Data with Microsoft Transact-SQL [+]
DP-080: Querying Data with Microsoft Transact-SQL [-]
Lire plus
5 days 25 500 kr
MS-500: Microsoft 365 Security Administrator [+]
MS-500: Microsoft 365 Security Administrator [-]
Lire plus
Velkommen til årsmøte for PRO Vestland Opplæringskontor!       [+]
-      [-]
Lire plus
3 days
Etter endt kurs skal eleven gjennomføre en teoretisk og en praktisk prøve for å vise at han/hun har tilstrekkelige kunnskaper om lover, forskifter, standarder, oppbygg... [+]
MålsettingEtter endt kurs skal eleven gjennomføre en teoretisk og en praktisk prøve for å vise at han/hun har tilstrekkelige kunnskaper om lover, forskifter, standarder, oppbygging, sertifisering, merking, kontroll og kasseringsregler for forskjellige typer manuelle taljer, samt kontrollprosedyrer og utfylling av sertifikater ogkontrollrapporterEmnelisteInnledning Regelverk Oppbygning, sert. merking, kontroll og kasseringsregler Kontrollprosedyrer Ståltau, kjetting, Utfylling av sertifikater, bruk av manualer, Praktisk trening, sjekklister, manualer, prosedyrer Teoretisk og praktisk eksamen AvslutningsprøveTeori eksamenKompetansebevis / sertifikatEt kursbevis vil bli utstedt til hver kandidat som har gjennomført og bestått opplæringen. Kursbeviset vil inneholde informasjon om opplæringssted, kursinnhold, dato for gjennomføring, kandidatens navn og fødselsdato og være signert av daglig leder/kurs koordinatorPris er per deltaker og inkluderer alle kursdager, eksamen samt lunsj i vår kantine. [-]
Lire plus
Salle de classe virtuelle 3 days 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Lire plus
1 day 9 500 kr
06 Oct
AI-3022: Implement knowledge mining with Azure AI Search [+]
AI-3022: Implement knowledge mining with Azure AI Search [-]
Lire plus
Oslo 5 days 30 000 kr
17 Nov
17 Nov
Administering Microsoft SQL Server [+]
Administering Microsoft SQL Server [-]
Lire plus
Oslo Bergen Og 1 annet sted 5 days 27 500 kr
15 Sep
15 Sep
27 Oct
AZ-400: Designing and Implementing Microsoft DevOps solutions [+]
AZ-400: Designing and Implementing Microsoft DevOps solutions [-]
Lire plus
En ligne 12 months 42 500 kr
Denne fagskoleutdanningen passer for deg som er interessert i en kort utdanning rettet mot juridisk kontorarbeid. [+]
Denne fagskoleutdanningen passer for deg som er interessert i en kort utdanning rettet mot juridisk kontorarbeid. Den gir også muligheten til å gå videre på Advokatsekretær (60 studiepoeng).   Juridisk kontormedarbeider gir deg de verktøyene du trenger for å utføre kontorarbeid innen den juridiske bransjen. I løpet av studiet vil du blant annet lære om enkelte juridiske emner, relevant programvare, kontorrutiner, bransjeetikk, prosjektsamarbeid, bransjerelevant regnskap og juridisk engelsk. Du vil også arbeide med juridiske dokumenter og løse praktiske oppgaver ved hjelp av relevante rettskilder og bruke Lovdata Pro. Etter fullført utdanning vil du kunne bruke juridisk metode og relevante IT-verktøy som gjør deg i stand til å løse juridiske arbeidsoppgaver på en effektiv og selvstendig måte.   Når du har fullført utdanningen har du mulighet til å fortsette videre ved å ta andre semester på utdanningen Advokatsekretær. Denne utdanningen gir 60 studiepoeng, og går enda mer i dybden på jusfaget.    [-]
Lire plus
4 days 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Lire plus
Salle de classe virtuelle 3 days 20 000 kr
This course teaches Network Engineers how to design, implement, and maintain Azure networking solutions. [+]
COURSE OVERVIEW  This course covers the process of designing, implementing, and managing core Azure networking infrastructure, Hybrid Networking connections, load balancing traffic, network routing, private access to Azure services, network security and monitoring. Learn how to design and implement a secure, reliable, network infrastructure in Azure and how to establish hybrid connectivity, routing, private access to Azure services, and monitoring in Azure. TARGET AUDIENCE This course is aimed at Network Engineers looking to specialize in Azure networking solutions. An Azure Network engineer designs and implements core Azure networking infrastructure, hybrid networking connections, load balance traffic, network routing, private access to Azure services, network security and monitoring. The azure network engineer will manage networking solutions for optimal performance, resiliency, scale, and security. COURSE CONTENT Module 1: Azure Virtual Networks In this module you will learn how to design and implement fundamental Azure Networking resources such as virtual networks, public and private IPs, DNS, virtual network peering, routing, and Azure Virtual NAT. Azure Virtual Networks Public IP Services Public and Private DNS Cross-VNet connectivity Virtual Network Routing Azure virtual Network NAT Lab 1: Design and implement a Virtual Network in Azure Lab 2: Configure DNS settings in Azure Lab 3: Connect Virtual Networks with Peering After completing module 1, students will be able to: Implement virtual networks Configure public IP services Configure private and public DNS zones Design and implement cross-VNET connectivity Implement virtual network routing Design and implement an Azure Virtual Network NAT   Module 2: Design and Implement Hybrid Networking In this module you will learn how to design and implement hybrid networking solutions such as Site-to-Site VPN connections, Point-to-Site VPN connections, Azure Virtual WAN and Virtual WAN hubs. Site-to-site VPN connection Point-to-Site VP connections Azure Virtual WAN Lab 4: Create and configure a local gateway Create and configure a virtual network gateway Create a Virtual WAN by using Azure Portal Design and implement a site-to-site VPN connection Design and implement a point-to-site VPN connection Design and implement authentication Design and implement Azure Virtual WAN Resources   Module 3: Design and implement Azure ExpressRoute In this module you will learn how to design and implement Azure ExpressRoute, ExpressRoute Global Reach, ExpressRoute FastPath and ExpressRoute Peering options. ExpressRoute ExpressRoute Direct ExpressRoute FastPath ExpressRoute Peering Lab 5: Create and configure ExpressRoute Design and implement Expressroute Design and implement Expressroute Direct Design and implement Expressroute FastPath   Module 4: load balancing non-HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for non-HTTP(S) traffic in Azure with Azure Load balancer and Traffic Manager. Content Delivery and Load Blancing Azure Load balancer Azure Traffic Manager Azure Monitor Network Watcher Lab 6: Create and configure a public load balancer to load balance VMs using the Azure portal Lab:7 Create a Traffic Manager Profile using the Azure portal Lab 8: Create, view, and manage metric alerts in Azure Monitor Design and implement Azure Laod Balancers Design and implement Azure Traffic Manager Monitor Networks with Azure Monitor Use Network Watcher   Module 5: Load balancing HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for HTTP(S) traffic in Azure with Azure Application gateway and Azure Front Door. Azure Application Gateway Azure Front Door Lab 9: Create a Front Door for a highly available web application using the Azure portal Lab 10: Create and Configure an Application Gateway Design and implement Azure Application Gateway Implement Azure Front Door   Module 6: Design and implement network security In this module you will learn to design and imponent network security solutions such as Azure DDoS, Azure Firewalls, Network Security Groups, and Web Application Firewall. Azure DDoS Protection Azure Firewall Network Security Groups Web Application Firewall on Azure Front Door Lab 11: Create a Virtual Network with DDoS protection plan Lab 12: Deploy and Configure Azure Firewall Lab 13: Create a Web Application Firewall policy on Azure Front Door Configure and monitor an Azure DDoS protection plan implement and manage Azure Firewall Implement network security groups Implement a web application firewall (WAF) on Azure Front Door   Module 7: Design and implement private access to Azure Services In this module you will learn to design and implement private access to Azure Services with Azure Private Link, and virtual network service endpoints. Define Azure Private Link and private endpoints Design and Configure Private Endpoints Integrate a Private Link with DNS and on-premises clients Create, configure, and provide access to Service Endpoints Configure VNET integration for App Service Lab 14: restrict network access to PaaS resources with virtual network service endpoints Lab 15: create an Azure private endpoint Define the difference between Private Link Service and private endpoints Design and configure private endpoints Explain virtual network service endpoints Design and configure access to service endpoints Integrate Private Link with DNS Integrate your App Service with Azure virtual networks   TEST CERTIFICATION This course helps to prepare for exam AZ-700 [-]
Lire plus